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ABSTRACT 

Let S be a compact set in R 2 with nonempty interior, L(u,k) be a line (u, x)  
=k,  and (u(k) be the linear Lebesgue measure of S ~ L(u, k). It is well known 
that for a convex S, (u(k) is unimodal, that is, as a function of k, it is first non- 
decreasing and then nonincreasing for every u~ R 2. Further, if S is centrally 
symmetric with respect to M, (u(k) achieves maximum when L(u, k) passes 
through M. Converse propositions are considered in this paper for polygonal S 
with Jordan boundary. It is shown that unimodality alone does not suffice for 
convexity. However, if (u(k) achieves maximum whenever L(u, k) passes 
through some fixed point M then unimodality yields convexity as well as 
central symmetry. It is also shown that continuity of (u(k) in the interior of its 
support implies convexity of S. This last result, however, is false for non- 
polygonal sets. 

1. Introduction and summary 

Let S be a compact  set in the Euclidean plane R 2 having a non-empty  interior. 

Fo r  a fixed non-zero vector u ~ R 2 and k E R ,  let L(u, k) denote the line u �9 x = k 

and let tk,,(k) denote the linear Lebesgue measure of  S c~ L(u, k). I f  S is a convex 

body  then it is easy to verify that  q~,(k), as a function o f  k, is first non-decreasing 

and then non-increasing, no matter  what  u is chosen. Moreover  if the convex body 

S is centrally symmetric with respect to a point  M ,  then, for a fixed u, 6,(k) 

achieves a maximum when L(u, k) passes through M .  

In  this paper  the converse proposi t ions are considered. We prove (in a special 

case) that  if ~bu(k ) is non-decreasing first and then non-increasing and if ~b,(k) 
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achieves a maximum whenever L(u, k) passes through some fixed point M, then 

C is convex and centrally symmetric with respect to M. The special case con- 

sidered here assumes that S is a polygon whose boundary is a Jordan curve. It 

is believed however that the result holds for more general sets and that the proof 

may use some form of polygonal approximation. 

2. Unimodal functions, mode and central symmetry 

A non-negative function f on R is said to be unimodal if there is a v e R such 

that f is non-decreasing on ( -  o% v] and non-increasing on Iv, oo). Such a number 

v may not be unique. 

Let S be a compact set in R 2. For a non-zero u e R 2 and k e R,  let L(u, k) denote 

the line u �9 x = k.  Let q~,(k) denote the linear Lebesgue measure of S c3 L(u, k). 

The set S n L(u, ko) is said to be a modal (for the direction u) if 

~b,(ko) >_ ~b,,(k) for all k e R.  

A point M e R z is called a mode of S if every straight line passing through M 

produces a modal intersection with S.  

THEOREM 1. Let S be a compact convex body in R 2 . Then (i) S has at most 

one mode; (ii) if S has a mode M,  then M is in the interior of S.  

PROOF. If possible, let M1 and ME be the two modes of S. The separating 

hyperplane theorem shows that both M1 and M E belong to S. Let AtMtA  2 and 

BtM2B2 be the intercepts made on S by straight lines perpendicular to M t M z . 

(See Fig. 1.) Since M 1 and ME are both modes of S,  the lengths of A1A2 and B1B2 

must be equal. Therefore A1A2B2B 1 is a parallelogram. Let 11 and 12, respectively 

denote the parallel straight lines determined by A1B1 and AzBz. Further, for 

i = 1, 2, let PiQ~ be the intercept made on S by l,. Since S is convex and M1 and 

Mz are modes of S, it follows that S lies entirely between the two lines 11 and lz. 

But this implies that PIQ2 and PEQt are unique modals (in their respective direc- 

P4 M A 4 8 4 0 4 

[1- M ~ ~ ~ M 2  ' 
| PZ AZ B2 QZ 

Fig. 1. 
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tions) and since these intersect in a single point, there cannot be two modes. This 

proves (i). 

To prove (ii), assume that S has a mode M. As remarked earlier M cannot be 

outside S. If possible, let M be on the boundary of S. Let 11 be a line of support 

for S through M. (See Fig. 1 again). Since M is a mode, S n 11 has a positive 

length. Let P~QI be this intersection. Let 12 be the second line of support parallel 

to 11 and let P2Q2 = S N 12. Here P2 and Q2 may coincide. In any case, PIQ2 

and P2Q~ are unique modals which do not intersect in M.  This contradiction com- 

pletes the proof of the theorem. 

Hammer [1] proved the following result: If a convex body S in R ~ possesses a 

mode M in its interior, then S is centrally symmetric with respect to M. The 

remark which follows his proof gives the impression that the assertion holds for 

unbounded S also. However, a simple example shows that such a claim is false. 

Let S be a closed strip bounded by two parallel straight lines. Clearly every point 

of S is a mode; but S is centrally symmetric only with respect to points on the 

line which is equidistant from the boundary lines. 

Combining Hammer's result with our Theorem 1, we get the following theorem. 

THEOREM 2. I f  a compact convex body S in R 2 has a mode M ,  then S is 

centrally symmetric about M.  

3. Unimodality and convexity 

Let S be a compact set in S 2 having a non-empty interior. We will use the 

function t~,,(k) and the other terms defined in Section 2. Consider the following 

two conditions: 

CONDmON A. For every fixed non-zero u e R 2 , the function q~u(k) is unimodal 

in k. 

CorcomoN B. Besides satisfying condition A, set S also possesses a mode M. 

In what follows, the phrase "S has a mode" will be considered equivalent to 

the phrase "S satisfies condition B". This section tries to study the extent to which 

conditions A or B imply the convexity of S. To avoid trivial counterexample in- 

volving isolated points, lines protruding out of convex sets, etc., it is natural to 

assume that S is the compact support of itself, in the sense that no proper compact 

subset of S has the same planar Lebesgue measure as S. Even under this restriction 

condition A alone does not imply convexity; see Example 1 below. However, it is 
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believed that condition B is sufficient to imply convexity. While we have been 

unable to settle this general problem, we are in a position to prove the following 

theorem. As already remarked in Section 1, the general case may follow by some 

kind of polygonal approximation. 

THEOREM 3. Let S be a compact polygon in R 2 with a Jordan boundary. 

I f  S has a mode M ,  then S is convex and centrally symmetric about M .  

The proof of this theorem is divided into several lemmas. Before we present 

these, we give some definitions and make some remarks. A set S in a linear topo- 

logical space is called strongly locally convex at a point p ~ S if there is a neigh- 

borhood N o fp  such that N (3 S is convex. It is known (cf. Theorem 4.4 in Valentine 

[2]) that if a closed, connected set S in a linear topological space is strongly lo- 

cally convex at each of its points, then S is convex. In particular, let S be a compact 

polygon in R 2 with a Jordan boundary. Then it is clear that S is strongly locally 

convex at each interior point of S and also at each point on the boundary which 

is not a vertex. Our method of proving Theorem 3 therefore consists of proving 

that S is strongly locally convex at each vertex. For simplicity in writing, we 

will call a vertex A of S convex if S is strongly locally convex at A. The vertex 

will be called non-convex if it is not convex. 

For later use, we state here an important property. Let S be a compact polygon 

in R 2 with a Jordan boundary. Let B be a non-convex vertex of S formed by the 

sides AB and BC. (See Fig. 2; the shaded portion is a part of S.) Let l be the 

line determined by BC. Then B can be approached by points outside S only from 

that side of l on which A lies. In fact such a property characterizes non-convex 

vertices of S. 

L 
I 

A 
A C 

Fig. 2 

EX~PLB 1. It was remarked that condition A alone does not imply convexity, 

even for polygons with Jordan boundary. To see this, let ABCD and A'B'C'D'  be 

parallelograms which are mirror images of each other and are such that CD and 

C'D' meet outside the polygon ABCDD'C'B 'A ' .  This polygon can be seen to 

satisfy condition A but is not even star-shaped. (We are grateful to George Con- 
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verse for modifying our original example where S was a star-shaped nonconvex 

polygon.) 

A 
t 

8 

i 
A / ~ A t 

C' 

Fig. 3 

We now proceed to present the lemmas which will imply Theorem 3. It is to 

be understood that S is a compact polygon with a Jordan boundary. It is also 

to be understood that S has a finite number of  vertices. We use the symbol S* to 

denote the kernel of S (i.e., the set of  points with respect to which S is star-shaped). 

LEMMA I. Let S have a mode M which is in the interior of S*. Then S is 

convex and centrally symmetric with respect to M .  

PROOF. Let V be a neighborhood of M such that V c S*. Let K be a boundary 

point of S.  Then there cannot be any point K'  of S on the extension of M K  ; for 

otherwise, K would become an interior point o f S .  (See Fig. 4.) Thus a side passing 

through K cannot lie along the line determined by M K .  Further, if K is a vertex, 

then the two sides KJ and KL (say) of S through K lie on opposite sides of the 

ne determined by M K .  This fact will be used below. 

V 

J L 

Fig. 4 

If possible, let S have a non-convex vertex B. Extend B M  until it comes out of  

S at B'. (See Fig. 5.) If B' is not a vertex, then it is easy to see that BMB'  is not 

modal. Therefore B' must be a vertex. Let A'B'  and B'C' be the sides passing 

through B' and AB and BC those passing through B with A' and A on the same 

side of the line B M B ' .  This side of BMB'  will be called as "left side of B M B ' . "  
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B 

A ' ~  C' 
M\ \M 

Fig. 5 

NOW B'A' and CB must meet on the left side of BMB'; for, otherwise, the intercept 

parallel to BMB' to the left of  BMB' would be larger than BMB'. Now choose 

M'  to the right of BMB' and so close to M that M '  ~S* and B'M' when extended 

leaves S at a point D which is on the side BC. Now the line through M parallel 

to B'M'D leaves an intercept EMF on S such that EMF < B'M'D. This contra- 

diction proves that S does not have a non-convex vertex. This proves that S is 

convex. The central symmetry follows from Theorem 2. The proof  of the lemma 

is thus complete. 

It is evident from Lemma 1 that Theorem 3 would be proved as soon as we 

prove that 

S has a mode M ~ M is in the interior of S*. 

This will be done through a series of steps. The next two lemmas will be used in 

the proofs of subsequent lemmas. 

LEMMA 2. I f  a point K is such that A K c  S for every vertex A of S ,  then 

K e S * .  

PROOF. Let A K c  S for every vertex A of S.  If possible, let K be outside S*. 

Then there exists a point C on the boundary of S such that CK is not entirely in 

S.  Let AB be the side containing C. Then the sides of the triangle ABK are all in 

S,  whereas there is a point x on CK such that x e S c, the complement of S. Thus 

there are points of S c both within and outside the triangle ABK.  But then S can- 

not have a Jordan boundary. This contradiction proves the temma. 

EXAMeLe 2. Lemma 2 fails if the boundary of S is not assumed to be a Jordan 

curve. For  example, let ABC be a triangle and D and E be two points in the 

interior of  ABC. Let S be the set of points of ABC which are not in the interior 

of triangle ADE. The vertex A satisfies the hypothesis of  Lemma 2 but clearly, 

S is not star-shaped. 
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LEMMA 3. Let ~ be outside S*. Then there exists a point x o e S such that : 

(i) Xo is a boundary point of S ; (ii) Xo is not a vertex of S ; (iii) the side l of S 

containin# x o does not pass throuoh ~ when extended in either direction; (iv) 

there is a point Yo on the line se#ment Xo~ such that Yo ~ Xo and the entire open 

line segment (Yo, xo) is outside S. 

PROOF. Since ~ is outside S*, there exists a point z e S such that the line seg- 

ment ~z is not entirely in S. If  we proceed from z to ~ in a straight line, then we 

must leave S for the first time at x (say) and then re-enter S at y (say). Here x and 

z could coincide. Also y and ~ could be the same. If, after leaving S at x ,  we do 

not meet S again before reaching ~, then we take y = ~. Two cases arise. 

Case 1. Let x not be a vertex of S and let I be the side containing x.  (See Fig. 6.) 

Then l,  when extended, cannot pass through ~, for, otherwise, while proceeding 

from z to ~, we would not leave S at x .  Taking Xo = x and Yo = Y we see that 

all the conclusions of the lemma are satisfied. 

b ~ ,,Z 

Fig. 6 

Case 2. Let x be a vertex of S and let xA,  xB be the sides meeting at x .  Re- 

labelling the vertices if necessary we may assume that the angle ~xA is less than 

180 ~ and is not greater than the angle ~xB. (Various positions ofxB are shown by 

dotted lines in Fig. 7. The angle ~xA could be acute.) Let y '  be in the open line 

segment yx.  Since y '  e S  c, there is a circular neighborhood N of y '  such that 

N c S c. Choose x' in the open line segment xA so close to x that ~x' intersects 

N in an interval. We can now take x' as the x of  Case 1 above. The proof of the 

lemma is thus complete. 

. -8  p 
/ d w  'w" 

A 

Fig. 7 



Vol. 15, 1973 SYMMETRY FOR PLANAR POLYGONAL SETS 363 

LEMMA 4. I f  S has a mode M ,  then S is star-shaped with respect to M .  

PRoof. Suppose S is not star-shaped with respect to M.  Then there exist points 

Xo, Yo and a side 1 satisfying the conclusions of Lemma 3. Let the equation of the 

�9 line determined by l be u.  x = Co. Further let u- M < Co. Choose cl < co but 

close to Co so that u- Yo < c t and there is no vertex of S in the region c 1 < u.  x < Co. 

Let T = { x ~ S I c  I < u ' x  <Co} and Tc = { x e S l u ' x  = c} .  The set T must 

be non-empty; for, otherwise S would not be connected. Since there is no vertex 

of  S in T, it follows (see Fig. 8) that T is a finite disjoint union of  trapezia bounded 

. . . .  - / .  - - U , X = C I  
l 

I 

Yo/ 
I 

I 
M~ 

Fig. 8 

by the lines u "x = Co and u ' x  = el .  We note the following properties of the 

trapezia : (i) the trapezia are open from the top side; (ii) a trapezium may degen- 

erate into a triangle; (iii) two trapezia may have a common limiting point on 

u '  x = co. Now let G = T c o  (3 T where T is the closure of T ,  and G' = T~o- G. 

Let 2 denote linear Lebesgue measure. From the choice of  Xo, Yo and l,  it is clear 

that, with the exception of the er~d points, the entire side I is a subset of G'. There- 

fore 2(G') > 0. It is easy to see that G consists precisely of the top sides of the 

trapezia which constitute T .  It follows that 2 (T~)~  3'(G) as c ~ co from below. 

(Another way to see this is that, for each trapezium, we are only measuring the 

difference between two linear functions. We must therefore have continuity.) Now 

since G c3 G' = r  

3'(Too) = 3'(G w G') = 2((3) + 3,(6') > 3,(G) = lira 3,(T~). 
C--~ CO 

Therefore, if c is sufficiently close to Co and c < Co, then 3,(To)< 3,(T~o). Hence 

S cannot have a mode in the region u" x < co. In particular M cannot be a mode 

of  S.  This completes the proof  of the lemma. 

LEMMA 5. Let S have a mode M .  Then M is in the interior of S .  Moreover 

M cannot lie on any line determined by a side of S passing through a non- 

convex vertex of S .  
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PROOF. By Lemma 4, M e S*. Therefore M e S.  It is easy to see that M can- 

not be a convex vertex of S nor can it be a boundary point which is not a vertex, 

since otherwise every vertex of S must be convex, so S is convex (and we have the 

situation of Theorem 1). Thus the lemma will follow as soon as the second asser- 

tion is proved. So, let C be a non-convex vertex of S and let BC and CD be the 

sides meeting at C. Let l be the line determined by CD. If  possible let M e l .  

Since M e S*,  it is easy to see that by extending DC a boundary point P of S 

could be found from which a side (or a part of  a side) PQ comes out such that 

Q is on the opposite side of l from B. (See Fig. 9.) Further M has to be in the 

11 

E 
B 

l 
I 

t 
Fig. 9 

closure of the line segment CP. Although the assumption of Jordan boundary 

prohibits C and P to coincide, M could be either at C or P .  Again M e S* implies 

that the side DE through D must come out on the opposite side of l from B. 

Choose points P '  and D' on PQ and DE respectively. If possible let P'D' c S 

Then the entire quadrilateral PP'D'D is a subset of S.  But then P'D is larger 

than the parallel intercept through C. This contradicts the fact that M is a mode. 

Therefore P'D' must have a point outside S. Since the triangles PQM and DEM 

are subsets of S, we see, by letting P ' ~ P  and D ' ~ D  that M is a boundary 

point of S which can be approached by points in S c from the opposite side of l 

from B.  But then M cannot be at C. Thus M cannot be at any non-convex vertex. 

But since M is a boundary point, we get a contradiction. This proves that M is out- 

side l and completes the proof  of the lemma. 

LEMMA 6. Let S have a mode M.  7hen M is in the interior of S*. 

PROOF. By Lemma 5, M is in the interior of S.  Let V be a circular neighbor- 

hood of  M such that V c S. Let B be a vertex of S.  Then if a side of  S starting 
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from B lies along the line l determined by M B  then, M being in S*, there would 

be a concave vertex on l, which would contradict Lemma 5. Further the two 

sides starting from B cannot come out on the same side of 1 ; for, otherwise, S 

would not be star-shaped with respect to M. Thus the situation is as shown in 

Fig. 10, where A B  and BC are the sides meeting at B. Now the union of V, the 

4 

B 

I ;f 
Fig. 10 

triangle A B M  and the triangle B C M  is a subset of S. It is then clear from the 

figure that there is a neighborhood V~ of M such that for every x e Va ,  the line 

segment x B  c S .  Since the number of vertices is finite, we can find a single neigh- 

borhood W of M such that for every x e W and for every vertex y of S, the line 

segment x y  c S .  Lemma 2 now shows that W c S*. This completes the proof of 

the lemma. 

In view of Lemma 1 and 6, we see that the proof of Theorem 3 is complete. 

4. Strong unimodality and convexity 

We remarked in the introduction that a convex body in R 2 satisfies condition A 

(i.e. the function ~bu(k ) is unimodal in k for each fixed u). We also showed in Sec- 

tion 3 (see Fig. 3) that condition A alone does not imply convexity even for poly- 

gons with Jordan boundaries. But a convex body actually satisfies a condition 

stronger than condition A, namely, the function ~bu(k ) is concave on its support, 

for every fixed u. This implies that, for a compact convex body, the function 

~b,(k) is continuous on the interior of its support. We shall show that this last con- 

dition is strong enough to imply convexity for compact polygons with Jordan 

boundaries. 
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THEOREM 4. Let S be a compact polygon in R 2 with a Jordan boundary. 

I f  the function ~p,(k) is continuous on the interior of its support, for every fixed 

u, then S is convex. 

PROOF. Suppose S is not convex. Then there is a ~ e S such that S is not star- 

shaped with respect to ~. But then the proof of Lemma 4 shows that there is a u 

such that q~u(k) is discontinuous in the interior of its support. This contradiction 

proves the theorem. 

It should be noted that condition A is not used in Theorem 4. This theorem is, 

of  course, false if S is not a polygon with a Jordan boundary. It is natural to ask 

whether the continuity of ~bu(k) and condition A would imply the convexity of 

general planar sets with Jordan boundaries. We are grateful to the referee for 

providing a negative answer to this question. As a counterexample, one can 

take the crescent formed by points which are inside the circle x 2 + y~ = 9 and 

outside the circle x z + ( y  - 4) z = 25. 
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